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Introduction

Sports Statistical Modelling

What for? Sports
1. Building a team Horse racing.
» Who to hire and what for. Baseball.
2. Betting. football.
> Paramutual. Football (aka futbol).
> Book.

Basketball.
Chess.

Tennis.

3. Ranking Teams or Players.
4. Training.
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4. Analyzing oponents.



Introduction

Why Marathon?

What were we looking for?

» Fairly compare runners of different ages and sex, because:

> Oversubscribed popular marathons award entry by time (Boston the
only way).
» World Masters Athletics rankings.

» Understand the best strategy to run a marathon.



Introduction

Why Generative Modeling?

It has less discriminative performance.
It needs more data.
Its harder to do inference.

It is not straightforward.
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It does not give you a number.



Introduction

Why Generative Modeling?

It has less discriminative performance.
It needs more data.
Its harder to do inference.

It is not straightforward.
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It does not give you a number.

We can interpret the solution.
We can answer any question.

We can find errors in our data.
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We can find what we were not looking for.



Introduction

Why Marathon?

What were we looking for?

» Fairly compare runners of different ages and sex, because:

> Oversubscribed popular marathons award entry by time (Boston the
only way).
> World Masters Association rankings.

» Understand the best strategy to run a marathon.

What else did we find?
» Women age differently than man.
» Men are riskier than women.

» Novice runners do not know their limits.



Introduction

Our data
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NYC Marathon finishing time 2006-2011.

Boston Marathon finishing time 2010-2011.

London Marathon finishing time 2010-2011.

NYC and Boston Marathon age of participants.

London Marathon age group of the participants.

Male and Female information of all participants.

NYC Marathon intermediate times (every 5Km and half).
Over 366,000 records.



Dependent Dirichlet Process

» Dirichlet Process for clustering:
p(x) = mifi(x|67)

Open-ended number of degrees of freedom.

» Dependent Dirichlet Process for clustering:

p(x|d) = Zm(d)ﬁ(XIO,-(d))

i

Use side information d to make parameters depend on it.



Particular Dependent Dirichlet Processes

» Hierarchical Dirichlet Process for
clustering:

p(xld) = 3" m(d) (16 | e 1l

» Single-p Dependent Dirichlet Process @ I | s |

for clustering: e I l ll
I

p(x|d) = Zw, H(x]0;(d
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Our Basic Model

xilGii = K, bk, 0, 0% ~ N (il + 65, 0%)
O~N(0,%5) 60=1[01,....0)]

(Z0)ej = 05 - exp (= (£ = j)?/2v%) + wO(L — J)
Mk NN(uo,aé) )
Gji = k|mg ~ Ty,
7|la ~ GEM(a),
02 ~1IG(a,b)

o




Hyperparameter Setting

1o =5 hours

oo =1 hour

Ug =15 minutes
a=1and b=1
v=10 and k=10"°
a ~T(1,10)
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Multiple Races

eri|ctji = k7,uk79jao-)2< NN(lei“j/k +9170)2<) )
Mk ~N(uo,03) )

0~N(0,%),

02 ~IG(a,b),

Crji = k|77rk ~ Trk,

r=1...R

7, |v,a ~ DP(q, v),

= P

vy ~ GEM(y), @ ///@:i ”:2:
«

: —o—
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Overall fit for 28 year-old male runners
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Proportions (28-year-old male runners)
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Comparison with Marathon entry requirements
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Delay for female runners
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Different races
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Intermediate time model

» Each participant has a time for each 5Km and half and full
Marathons.

» We convert each record to a proportion of time spent at each
interval.

» We use an HDP to cluster this proportions.

Xj,‘|Cj,' = k, px ~ Dirichlet (Tpkh - 77'ka)
p« ~ Dirichlet (efy, ..., €elp)



Hierarchical Dirichlet Process
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Proportions age and sex

Proportion of runners per age group in each cluster: Male
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Proportion of runners per age group in each cluster: Female
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Proportions finishing times

Proportion of runners per net time in each cluster

Averaged proportion
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Thanks!

Questions?



