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Sports Statistical Modelling

What for?

1. Building a team
I Who to hire and what for.

2. Betting.
I Paramutual.
I Book.

3. Ranking Teams or Players.

4. Training.

4. Analyzing oponents.

Sports

I Horse racing.

I Baseball.

I football.

I Football (aka futbol).

I Basketball.

I Chess.

I Tennis.

I ...
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Why Marathon?

What were we looking for?

I Fairly compare runners of different ages and sex, because:
I Oversubscribed popular marathons award entry by time (Boston the

only way).
I World Masters Athletics rankings.

I Understand the best strategy to run a marathon.
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Why Generative Modeling?

I It has less discriminative performance.

I It needs more data.

I Its harder to do inference.

I It is not straightforward.

I It does not give you a number.
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Why Generative Modeling?

I It has less discriminative performance.

I It needs more data.

I Its harder to do inference.

I It is not straightforward.

I It does not give you a number.

I We can interpret the solution.

I We can answer any question.

I We can find errors in our data.

I We can find what we were not looking for.
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Why Marathon?

What were we looking for?

I Fairly compare runners of different ages and sex, because:
I Oversubscribed popular marathons award entry by time (Boston the

only way).
I World Masters Association rankings.

I Understand the best strategy to run a marathon.

What else did we find?

I Women age differently than man.

I Men are riskier than women.

I Novice runners do not know their limits.
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Our data

I NYC Marathon finishing time 2006-2011.

I Boston Marathon finishing time 2010-2011.

I London Marathon finishing time 2010-2011.

I NYC and Boston Marathon age of participants.

I London Marathon age group of the participants.

I Male and Female information of all participants.

I NYC Marathon intermediate times (every 5Km and half).

I Over 366,000 records.
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Dependent Dirichlet Process

I Dirichlet Process for clustering:

p(x) =
∑
i

πi fi (x|θi )

Open-ended number of degrees of freedom.

I Dependent Dirichlet Process for clustering:

p(x|d) =
∑
i

πi (d)fi (x|θi (d))

Use side information d to make parameters depend on it.
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Particular Dependent Dirichlet Processes

I Hierarchical Dirichlet Process for
clustering:

p(x|d) =
∑
i

πi (d)fi (x|θi )

I Single-p Dependent Dirichlet Process
for clustering:

p(x|d) =
∑
i

πi fi (x|θi (d))
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Our Basic Model

xji |cji = k , µk , θj , σ
2
x ∼ N

(
xji |µk + θj , σ

2
x

)
θ ∼ N (0,Σθ) θ = [θ1, . . . , θJ ]

(Σθ)`j = σ2
θ · exp

(
−(`− j)2/2ν2

)
+ κδ(`− j)

µk ∼ N
(
µ0, σ

2
0

)
,

cji = k |πk ∼ πk ,
π|α ∼ GEM(α),

σ2
x ∼ IG (a, b)
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Hyperparameter Setting

µ0 = 5 hours

σ0 = 1 hour

σ2
θ = 15 minutes

a = 1 and b = 1

ν = 10 and κ = 10−6

α ∼ Γ(1, 10)
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Multiple Races

xrji |crji = k , µk , θj , σ
2
x ∼ N

(
xrji |µk + θj , σ

2
x

)
,

µk ∼ N
(
µ0, σ

2
0

)
,

θ ∼ N (0,Σθ) ,

σ2
x ∼ IG (a, b) ,

crji = k |πrk ∼ πrk ,
πr .|v , α ∼ DP(α, v),

v |γ ∼ GEM(γ),
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Overall fit for 28 year-old male runners
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Proportions (28-year-old male runners)
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Comparison with Marathon entry requirements
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Delay for female runners
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Different races
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Intermediate time model

I Each participant has a time for each 5Km and half and full
Marathons.

I We convert each record to a proportion of time spent at each
interval.

I We use an HDP to cluster this proportions.

xji |cji = k,pk ∼ Dirichlet (τpk1, . . . , τpkD)

pk ∼ Dirichlet (ε`1, . . . , ε`D)
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Hierarchical Dirichlet Process
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Proportions age and sex
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Proportions finishing times
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Thanks!

Questions?
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