
MIST: Multiscale Information and
Summaries of Texts

Paulo Pagliosa∗, Rafael Messias Martins†, Douglas Cedrim†, Afonso Paiva†

Rosane Minghim† and Luis Gustavo Nonato†

∗FACOM – UFMS, Campo Grande
†ICMC – USP, São Carlos

Fig. 1. MIST allows for the simultaneous visualization of individual documents as well as a summary of the document
collection content, enabling multiscale exploration of subset of documents by content.

Abstract—Combining distinct visual metaphors has been the
mechanism adopted by several systems to enable the simultaneous
visualization of multiple levels of information in a single layout.
However, providing a meaningful layout while avoiding visual
clutter is still a challenge. In this work we combine word clouds
and a rigid-body simulation engine into an intuitive visualization
tool that allows a user to visualize and interact with the content
of document collections using a single overlap-free layout. The
proposed force scheme ensures that neighboring documents are
kept close to each other during and after layout change. Each
group of neighboring documents formed on the layout generates a
word cloud. A multi-seeded procedure guarantees a harmonious
arrangement of distinct word clouds in visual space. The visual
metaphor employs disks to represent document instances where
the size of each disk defines the importance of the document
in the collection. To keep the visualization clean and intuitive,
only the most relevant documents are depicted as disks while the
remaining ones are either displayed as smaller glyphs to help
convey density information or simply removed from the layout.
Hidden instances are moved together with its neighbors during
rigid-body simulation, should they become visible later, but are
not processed individually. This shadow movement avoids excess
calculations by the force-based scheme, thus ensuring scalability
and interactivity.

Keywords-information visualization; multidimensional projec-
tion; rigid-body simulation; word clouds; text visualization

I. INTRODUCTION

Exploring document collections with the goal of identifying
and extracting information of interest has become a central
task in the current scenario of unprecedented growth of textual
data, affecting a very large number of applications.

The usefulness of document collection visualization meth-
ods depends largely on how efficiently the underlying visual
metaphor synthesizes and conveys the information one wants
to grasp from the visualization. For instance, word clouds
are quite effective in applications whose target is to provide
a summary visualization of the content of documents while
force-based methods are more appropriate for applications
demanding the identification and manipulation of particular
documents or groups of related documents.

In order to integrate a richer set of information in a single
visualization, several methodologies propose the combination
of multiple metaphors in a unified layout. Although multiple
metaphors favor the simultaneous presentation of information
with distinct natures, few existing approaches have in fact
been successful in designing composite layouts that provide
meaningful visualizations while avoiding distracting represen-
tations and preventing visual clutter. In particular, combining



dynamical point layouts of textual data with content-based
summarizations such as word clouds is a problem that has
not been properly tackled yet. In fact, the few methods that
propose the integration of these two visualization metaphors
are still deficient in terms of the quality of the resulting layout,
limited as to interactive resources, and not directly scalable.

This work proposes a new method to tackle the problem
of providing word cloud summarization while allowing for
interactive manipulation and visualization of individuals as
well as groups of similar documents mapped on a visual
plane. The methodology associates a word cloud to each group
of similar documents displayed via a rigid-body simulation
layout. Those word clouds are harmoniously merged on the
visual space using a multi-seed scheme. A rigid-body sim-
ulation arranges the disks representing documents so as to
ensure that similar instances are placed close to each other,
as shown in Fig. 1. The formulation also takes into account
the relevance of each document in the collection by changing
the size of the corresponding disk according to the document
relevance. To keep the layout clean and intuitive, only the
most relevant documents are depicted as disks. Documents not
inside the relevance threshold are either handled as tiny glyphs
to maintain the perception of region density or simply removed
from the visualization. Hidden instances are not taken into
account during the rigid-body simulation to speed up the pro-
cess, but they are moved with their neighbors so that they can
be recovered when necessary. Such a passive transportation
of hidden instances renders the rigid-body simulation scalable
and enables fair navigation throughout the data space.

The approach is highly interactive. Disks representing docu-
ments can be dragged around the visual space to generate new
layouts. The user can also focus the visualization on specific
regions of the visual space in order to further explore subsets
of documents. During navigation, the layout is dynamically
updated so as to uncover hidden structures and content,
rendering our approach quite intuitive and flexible.

Contributions The main contributions of this work are:

• A novel methodology for combining rigid-body simu-
lation and word clouds which enables to visualize the
similarity among documents as well as their content in
an integrated manner on the same visual display.

• The use of a rigid-body simulation engine to arrange doc-
uments in the visual space preserving their neighborhood
structure while avoiding overlapping documents. This is
accompanied by an importance-driven approach to speed
up the process.

• A new approach to build word clouds from multiple
seeds positioned underneath clusters of corresponding
documents.

As shown in the results presented in this paper, the harmonic
combination of metaphors together with interactive and graph-
ical resources provided endow the proposed system with a
set of traits unusual in content-based document visualization
approaches. Managing to code these features in a single pre-
sentation improves the state of the art in document analytics.

II. RELATED WORK

Visualization of document collections is a quite prolific re-
search area and the many existing methods vary greatly in
their mathematical and computational foundation. In order to
contextualize the proposed methodology we organize existing
document collection visualization methods according to their
visual metaphor, discussing overall properties and limitations,
avoiding, though, going into fine details. A more thorough and
detailed description can be found in the recent survey [1].

Word Cloud Kuo et al. [2] were one of the pioneers in using
keywords as a visualization resource, proposing a line-by-
line arrangement of words scaled according to their relevance.
The large amount of white space reduced by Kuo’s approach
has been tackled by Kaser and Lemire [3] and Wordle [4],
producing more pleasant and visually appealing layouts. The
lack of semantic relation among words in the cloud has
been handled by ManiWordle [5] through an interactive user
assisted mechanism and by Cui et al. [6] through a force
directed scheme that also allows for visualizing the temporal
structure of documents. More recently, Wu et al. [7] presented
a methodology that first computes semantic relationships and
then uses multidimensional scaling to place the keywords on
visual space. A Fiedler vector ranking is used to accomplish
proper semantic word ordering in [8] with very effective re-
sults. Other methods such as SparkClouds [9] and Parallel Tag
Clouds [10], augment word clouds with extra visual resources
such as spark lines and parallel coordinates in order to better
convey the summary content of the documents. Although very
effective to reveal the essential information contained in a
document collection, the word cloud paradigm alone does not
identify the association of words to a particular document or
group of documents or allows the examination of similarity
between documents.

River Metaphor River metaphors have been acknowledged
as an effective mechanism to visualize temporal thematic
changes in document collections. Introduced in the The-
meRiver system [11], river metaphors have been further im-
proved with sophisticated mechanisms to derive time-sensing
topics [12] and layered visualizations able to depict birth,
death and splitting of topic events [13]. EventRiver [14] makes
use of a clustering scheme to group news that are similar in
content and close in time, using a bubble metaphor whose
thickness represents the number of documents and the length
the duration of an event. History Flow [15] can also be seen
as river-based metaphor designed to visualize editions of a
document (or a document collection such as Wikipedia) made
by different authors, emphasizing which parts survive along
time. River metaphors provide a pleasant and intuitive visual-
ization as to the temporal behavior of a document collection,
but, similarly to word clouds, the technique does not allow
immediate identification of specific documents, their relevance
within the collection or their contribution to a topic. Moreover,
interacting with the river layout to accomplish change in user
perspective of the data set is not clearly feasible.



Linguistic-Based Methods that build visualizations based
on semantically-defined linguistic structures have also been
proposed in the literature. Word Tree [16], for example, uses
a tree layout to visualize the occurrence of terms along with
its following phrases, which are arranged in the descending
branches of the tree. Phrase Nets [17] employs a graph-based
layout where nodes correspond to a subset of words and edges
correspond to semantic or lexical relation between words. Font
size and edge thickness are used to visually map attributes
such as the number of occurrences of a set of words and
their relationship. A more sophisticated linguistic analysis
is employed by DocuBurst [18], which makes use of an
electronic lexical database and a radial space-filling tree layout
to visualize document content in a lexical manner. Keim and
Oelke [19] developed a method that employs semantic rules to
segment a document into blocks and function words to map
those blocks into feature vectors. The principal component
of each feature vector is used to color the blocks, resulting
in a fingerprint image of the document. In contrast to the
other linguistic-based methods described above, Keim and
Oelke’s method allows for identifying and comparing specific
documents in the data set, but compromising the legibility of
their content.

Hierarchical Techniques that rely on hierarchical structures
to enable level of detail content exploration and navigation are
also present in the literature. Topic Island [20], for example,
builds an hierarchy by applying wavelet analysis on a signal
extracted from document words. The hierarchy allows for visu-
alizing thematic changes and important parts of the document
collection. InfoSky [21] visualizes hierarchically organized
documents by subdividing the visual space using a recursive
Voronoi diagram. Navigation throughout the hierarchy is en-
abled by a telescope-like zoom mechanism. HiPP [22] makes
use of a cluster tree to hierarchically organize documents
according to their similarity, performing the visualization of
the hierarchy by projecting the nodes of the tree. Mao et
al. [23] visualize documents using curves constructed from
a generalization of n-grams and local averages, building the
hierarchy by changing the support of the kernels used in the
average computation. Although effective to build visual sum-
marizations as well as to identify structures in the document
topics, hierarchical techniques are not effective to associate
content and documents when the hierarchy is done on the
topics. Moreover, visualizing the hierarchical structure and
the importance of each document simultaneously is not a
straightforward task.

Force Directed Force directed techniques build visualizations
by minimizing a functional defined from pairwise text simi-
larity. FacetAtlas [24] employs a force direct graph layout for
laying down clusters of nodes, enriching the visualization with
density estimators as well as multifaceted data representation.
TopicNets [25] computes the dissimilarity between topics
extracted from a document collection and employs multidi-
mensional scaling to place those topics in the visual space.
A conventional force directed mechanism is then applied to

place documents around corresponding topics. Streamit [26]
uses the similarity among documents to define forces and
Newton’s law to update the position of those nodes in the
visual space. Documents can dynamically be added into the
system, enabling the visualization of streaming document data.
Streaming data is also handled by TwitterScope [27], which
converts a similarity graph into a map layout, employing a
force scheme to remove overlap between nodes. The overlap
removal problem has indeed been addressed by several meth-
ods [28], [29], [30], [31], [32] but preserving neighborhood
structures during force simulation still remains an issue. Force
directed methods allow for identifying a particular document
and its neighborhood relation. However, they are not effective
to provide a summary visualization of the content of the doc-
uments. The wordification technique proposed by Paulovich
et al. [8] tackles this problem by combining a force directed
algorithm, a multidimensional projection, and word clouds to
enable visualizations in which similar documents are placed
next to each other in the visual space, depicting their summary
content through word clouds built from document clusters.
Interacting with the layout so as to generate new arrangements
while still incorporating information such as the importance
of each document is an issue not handled by Paulovich’s
approach. Neither is the depiction of document relevance.

Other Metaphors Chuang et al. [33] proposed the Stanford
Dissertation Browser, which enables a set of visualization
resources to investigate the impact of interdisciplinary research
between academic departments at Stanford University. PCA-
based projections and radial layouts are used to visually
investigate shared ideas and interdisciplinary collaboration.
Document Cards [34] presents a quick overview of a collection
or single documents by adopting the rationale of top trumps
game cards, which use expressive images and facts to highlight
important key terms and representative images extracted from
a document. Chuang’s and the Document Cards solutions
are suitable to provide a compact visualization of a large
document collection. Nonetheless, they fail to show inter-
document relationships.

Existing methodologies are not designed to associate dy-
namic and interactive mechanisms to build a visual summary
of a document collection while still enabling the visualization
of the similarity between documents, their importance into the
collection, and their relationships such as links and citations.
No available technique integrates all these operations. As a
consequence, they force users with tasks that require details to
employ more than one visualization, that might not be linked
together. The technique presented in this paper encompasses
a set of traits that allow for those simultaneous functionality,
making possible to have an overall idea of document con-
tents while establishing a correspondence between words and
documents, on a clutter free layout. Additionally, the user can
dynamically rearrange the layout and further examine a subset
of documents and their neighborhood, adding exploration
flexibility to the approach.



Fig. 2. Main steps of the MIST pipeline.

III. THE MIST TECHNIQUE

The MIST technique comprises three main stages: pre-
processing, disks creation and rigid-body simulation, and word
cloud generation, as illustrated in Fig. 2. Three tasks are
performed during pre-processing. The first task is a process
for keyword extraction, to generate the word cloud in the third
step of the pipeline. Keywords are also used to compute the
similarity between documents. This similarity is used in the
second step, as input to a multidimensional projection method
that maps documents to a 2D visual space. The importance
of each document in the collection is also computed as a pre-
processing task and is based on the connectivity between the
individual documents, given by a user or application defined
graph. In the second stage of MIST, a rigid-body simulation
engine arranges a set of disks representing documents, with
their size determined by the importance of the document, so
as to avoid overlap while still preserving the neighborhood
structures provided by the initial multidimensional projection.
In the third and last stage of the pipeline, documents are
clustered according to their neighborhood and word clouds
are generated and harmoniously merged to produce the final
layout. Technical details of each task are provided below.

A. Pre-processing

Keywords Extraction Documents are processed to extract
keywords used in the word cloud construction as well as to
generate the vector space representation needed for multidi-
mensional projection. A list of keywords is associated to each
document in the collection by simply removing stopwords
(non-informative words such as articles and prepositions) and
reducing relevant words to their radicals. The number of
occurrences of each keyword is also stored to be used in
the word cloud and to build the multidimensional vector
space [35]. Terms that occur too sparsely or too often in all
documents are also removed as they have little differential
capability. The vector representation of documents is used by
a function that determines the dissimilarity between them in
the subsequent step.

Multidimensional Projection (MP) The rigid-body simula-
tion assumes as initial condition a set of disks in the visual
space. The center of those disks are provided by mapping
attribute vectors from the feature space to the visual space
using an MP, which ensures that the original neighborhood
structures are preserved as much as possible in the visual
space. In our system we are using the LSP (Least Square
Projection) [36] with Euclidean distances as dissimilarity tool,

since LSP’s effectiveness in projecting textual data with high
precision has already been established. In our experiments,
we perform LSP with 10 nearest neighbors for each cluster
and 10 control points. Any neighborhood preserving point
placement can be applied in its place.
Ranking Changing the size of visual entities according to
the relevance of the document they represent is a useful
resource to better analyze and explore document collections.
The relevance of a document in the collection can be calculated
in many different ways, but the computation of the dominant
eigenpair of a stochastic matrix is one of the most common
approaches [37]. In the proposed system, when documents are
linked according to some relation, as for example citations or
hyperlinks, the relevance of each document is given by the
solution the eigenvector problem Mx = x where each column
of M corresponds to a document and an entry Mij is non-
zero when the document i is link to the document j, in that
case, Mij = 1/outdeg(i). When the document collection has
no link information, the relevance is computed from the k-
nearest neighbors (KNN) graph.

B. Disks Creation and Rigid-Body Simulation

Each point resulting from the MP gives rise to a rigid-body,
which in our case is a disk centered in the projected point with
radius defined by the relevance of the document associated
to the projected point. At this stage the disks will overlap
considerably, requiring high degree of interaction to access
groups and individuals. If there is enough visual space to
accommodate all individuals, it should be possible to avoid
clutter and still allow the same interpretation of neighborhood
provided by the projection.

Simply spreading the disks towards removing overlaps is
not effective, as neighborhood structures can be damaged.
Therefore, we propose a force scheme that pushes overlapping
disks apart while still avoiding to disturb the neighborhood
given by the initial placement. In such a scheme, we employ
a rigid-body dynamics engine called Box2D [38] to update
the position of the center of each disk along the simulation
from impulses and forces acting on the bodies. Impulses are
automatically applied by the physics engine to spread apart
intersecting bodies [39]. In addition, we introduce attractive
forces in order to prevent neighbor disks to distance from each
other during the simulation. The attractive force Fi associated
to a disk i is computed as:

Fi =
∑
j∈Nk

i

mimjdij
xi − xj

‖xi − xj‖2
, (1)



where mi = πr2i is the mass and ri is the radius of the disk,
dij = max {0, ‖xi − xj‖2 − (ri + rj)}, and Nk

i corresponds
to the KNN set of the disk. In our experiments, the value of
k is chosen ∼2% of the total number of documents.

The edges of the main window can also be considered as
rigid bodies, thus enforcing the disks to be confined within
the viewport. This feature can be set on/off in our system.

C. Multi-seeded Word Cloud

Once disks have been properly placed by the rigid body
simulation mechanism, a summary of the corresponding doc-
uments content is depicted using word clouds. In order to
provide as much information as possible we build a set of
word clouds and merge them in an harmonious manner. More
specifically we employ k-means++ [40] to group the disks,
where the number k of clusters is set by the user. Users
can also change the font and color used in each word cloud.
Keywords associated to each document, computed in the pre-
processing step, are filtered out according to their relevance,
given by the number of occurrences of each keyword present in
the documents making up the cluster. As illustrated in Sec. IV,
the system also admits the relevance of keywords as input, thus
enabling the use of more sophisticated semantic preserving
techniques (eg. [8]) defining the relevance.

The center of the bounding box of each cluster ci is used to
seed the construction of its corresponding word cloud. The
set of words Wi associated to the cluster ci are sorted in
descending order according to their relevance and the most
relevant keyword is placed in the center of the bounding box
bi of the cluster ci. The size of the font is defined as a function
of the width of the bounding box bi, that is, starting from a
maximum font size the font size of the most relevant keyword
is decreased until it reaches 70% of the width of bi. The
font size of the remaining keywords are linearly interpolated
between the maximum font size and the minimum font size
and those keywords are horizontally placed inside bi following
the same procedure proposed in RWordle [41]. The minimum
font size is pre-fixed. The procedure stops when no more room
is left in bi to place a keyword.

Since the bounding box of distinct clusters may overlap, the
bounding rectangle of a keyword to be placed inside bi can
intersect the bounding rectangle of keywords in other clusters.
In order to accelerate the check of intersections between
keywords in distinct clusters we use a dynamic tree to store the
rectangles containing each keyword, being the data structure
adopted a variation of the Presson’s dynamic bounding volume
tree employed in the Bullet Physics SDK [42].

D. Computational Aspects

The size of the disks representing documents and the physical
units used in the rigid-body simulation are derived from a
viewport defining the visualization window. The most relevant
document is represented by the larger disk with radius rmax

while the disk representing the less relevant document has the
radius rmin. The radii rmax and rmin are set so that the area of
the larger and smaller disk correspond to 5% and 0.5% of the
viewport area, respectively. The radius of the remaining disks

are linearly interpolated between rmax and rmin according the
their relevance value. The number of disks to be visualized
is also dictated by the viewport area, that is, the area of the
disks are summed up in descending order until reaching 75%
of the viewport area. The first t of the remaining disks, sorted
according to their relevance, are set with a small area (4 pixels)
and included in the physical simulation while the least relevant
instances are not visible and they move together with their
closest visible disk. The value of t can be adjusted and it is
by default set as two times the number of visible disks.

When the user selects a rectangular region on the viewport
for further exploration (navigation zoom), the selected region
is mapped to a new viewport and the whole process described
above is executed in this new viewport but constrained to the
subset of instances contained in the region selected by the user,
as illustrated in Fig. 1.

Another aspect that deserves to be discussed is how to speed
up the physical simulation by changing the length unit. The
Box2D rigid-body simulation engine is optimized to bodies
with sizes ranging from ∼0.1 and ∼10 meters [38]. Therefore,
the coordinates of the center and the radius of each disk are
scaled to range in that interval.

IV. RESULTS AND COMPARISON

In order to show the performance of our approach we ac-
complish tests and comparison employing 3 data sets. One
data set includes all papers (616 documents) published in the
IEEE Information Visualization Conference (IV) from 1995
to 2002 [43], along with metadata such as title, keywords,
abstract and references. We also used the High Energy Physics
data set (kdl.cs.umass.edu/data/hepth/hepth-info.html),
which contains information derived from the abstract and
citation of papers in theoretical high-energy physics. More
specifically, we split the original data set in two subsets with
2000 (HEP2) and 3000 (HEP3) randomly obtained instances.

In order to assess the effectiveness of the proposed ap-
proach regarding layout organization, neighborhood preserv-
ing, and compactness we have run a set of comparisons against
other 4 force-directed techniques described in the literature.
Fruchterman-Reingold method (FR) [29] uses a spring model
to place the nodes of a graph in the visual space, using a
reduced number of parameters. Yifan Hu’s (YH) method [32]
makes use of force-directed approach that employs a multilevel
scheme to avoid local minima. The Attractive and Repulsive
Forces (ARF) method [30] extends the spring-based method-
ology aiming at reducing empty spaces on the layout. These
three techniques allow for representing nodes as disks but they
only avoid overlap between disks if the radius is constant, that
is, all disks have the same size. Overlap between disks with
varying radii can be handled by tuning certain parameters.
In contrast to FR, YH and ARF, the ForceAtlas2 (FA2) [31]
technique manages to treat overlap with disks of varying sizes.
It makes use of linear attraction and repulsion forces to arrange
disks in the visual space while avoiding overlap.

Four distinct measurements have been used to compare
MIST against these techniques, namely neighborhood preser-
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Fig. 3. Quantitative evaluation of neighborhood preservation and layout
compactness for MIST, FR, ARF, FA2, and YH techniques.

vation (KNN), Euclidean distance average preservation, layout
dissimilarity, and size increase.

Neighborhood preservation computes the average percent-
age of the KNN of the initial layout that is preserved after force
simulation. The Euclidean distance preservation is given by
E = 1

n

∑
i ‖xo

i − xi‖2, where xo
i and xi are the initial and

final position of the center of the disks, n is the number of
disks and d is the Euclidean distance. This value measures how
much disks move during the force simulation since the least
they move the better the preservation of initial configuration.
Layout dissimilarity quantifies the degree to which neighbor-
hood structures are affected by the force simulation. The idea
is to measure how much the length of edges in the initial KNN
graph change after simulation. In mathematical terms, letting
loij and lij denote the lengths of the edges before and after
simulation, the layout dissimilarity is given by

σ =

√
(
∑

(rij − r)2) /m
r

, r =

∑
rij
m

(2)

(a) Wordification

(b) MIST
Fig. 4. Comparing the word clouds produced by (a) Paulovich’s Wordification
method [8] and (b) MIST using the same number of clusters (5) and the same
set of keywords.

(a) MIST (b) FA2 (c) FR

Fig. 5. Layouts produced by MIST, FA2, and FR. MIST presents much
better cluster preservation.

where rij = lij/l
o
ij and m is the number of edges in the KNN

graph. Small values of dissimilarity correspond to good layout
preservation. Finally, given the convex hulls Co and C of the
original and modified layouts, the size increase is measured as
S = area(C)/area(Co) and it determines the relative changes
in size as well as the compactness of the modified layout. The
closer the size increase is to 1 the better, meaning that the
technique does not require too much extension or shrinking
of the original designed area.

Fig. 3 shows the result of the chosen measurements applied
to the layouts produced by MIST and the methods used for
comparison when visualizing the data sets IV, HEP2, and
HEP3, assuming the same initial configuration, that is, the
same MP before applying any of the methods. Relevance



information has not been taken into account, thus the radii of
the disks are constant, which is a necessary condition for FR,
YH, and ARF to handle the overlap between disks adequately.
Since MIST allows to confine the layout within a box we ran
tests with two versions of the algorithm. Constrained MIST
(MISTc) is the layout with box confinement and MISTf runs
with the confinement turned off. Notice that MIST performs
significantly better than other methods in all measurements
when dealing with the larger data sets HEP2 and HEP3, and
performs quite well also with the IV data set.

The quantitative results shown in Fig. 3 attest that MIST
produces more compact results while better preserving the
initial neighborhood structure provided by the MP. Fig. 5
shows the layout resulting from MIST, FA2, and FR when
visualizing the IV data set taking relevance information into
account. Colors show how neighborhoods are preserved af-
ter simulation. More specifically, we first apply k-means to
cluster, in the visual space, the output of the MP, running
then the physical/force simulation to observe how well the
clusters (neighborhood structures) are preserved. The results
clearly show that MIST preserves better the clusters while still
keeping a compact layout. In contrast to MIST, that takes only
the number of clusters as needed parameter, the user has to set
various parameters for the FR method to avoid overlap. As it
can be seen from Fig. 5c, tuning those parameters to obtain a
good compromise between overlap removal and compactness
is not an easy task.

Fig. 4 compares the word clouds generated by MIST and
the word clouds generated by the wordification mechanism
proposed by Paulovich [8]. While Paulovich’s method dis-
criminates groups of word clouds by using white space, MIST
employs background colors, which allows for identifying the
distinct word clouds while maintaining a more uniform and
harmonious layout. In this comparison we employed the
same number of clusters and keywords for both methods.
The relevance of each keyword was also obtained by [8].

We conclude this section discussing two important func-
tionalities of MIST, namely, linked documents visualization
and exploratory navigation. As illustrated in Fig. 6, MIST
allows for highlighting link relation between documents. In
the specific example of Fig. 6, which represents a co-citation
network, when the user selects a document (red ring) all
documents that cite the selected one are highlighted. This
functionality is quite useful when analyzing scientific paper
reference and citation networks, as well as web pages. Fig. 6
shows that the user can also drag documents around to modify
the layout and generate alternative arrangements.

Another important functionality of MIST is the exploratory
zoom illustrated in Fig. 1. The tiny glyphs moved together
with the disk help convey the density information of each
cluster. The density information is useful to indicate which
regions in the visualization enclose hidden data and should be
further explored. To visualize the information hidden because
of low relevance, the user simply draws a rectangle defining
the region to be explored and MIST re-starts the whole visu-
alization process from the data enclosed by the user defined

Fig. 6. Highlighting linked documents.

region. As one can see from Fig. 1 the navigation can be run
recursively, enabling a detailed investigation of the document
collection. Notice that context is not lost during navigation,
as a previously defined exploratory windows are kept in the
visualizations until the corresponding windows are closed.

V. DISCUSSION AND LIMITATIONS

In our experiments we noticed that FR and FA2 do not con-
verge for certain initial configurations. Additionally, YH tends
to produce elongated layouts when parameters are changed to
avoid overlap for size varying disks. We have not faced any of
these issues in any of the experiments performed with MIST.

A fair comparison of the methods in terms of computational
times is not a simple task, as FR, ARF, FA2, and YH are
implemented in Java and our system is completely coded in
C++. However, to give a rough idea of processing times, MIST
provides visualizations at interactive rates, as it processes only
the data that will be presented in the visualization window.
The other methods, however, take dozen of seconds to process
HEP2 and HEP3 data sets, impairing interactivity.

The mechanism we use to make MIST scalable, that is,
moving unseen documents together with their nearest neigh-
bor, may impact negatively in neighborhood preservation
within the navigation window. Although the attraction forces
tends to bring neighboring instances close to one another, some
visible disk can be placed between two hidden neighbors,
preventing the force simulation to approximate those disk
when they become visible. We are investigating alternatives
to overcome this limitation.

VI. CONCLUSIONS

In this paper we have presented MIST, a novel methodology
to visualize the collection of textual documents that enables the



simultaneous visualization of multiple levels of information
in a single layout. The method builds upon a physical rigid-
body simulation engine to arrange disks in the visual space
avoiding overlap while preserving neighborhood structures.
Individuals that do not reach a degree of relevance, calculated
over an input relationship graph, can be explored in further
levels of exploration. The provided comparisons have shown
MIST to produce more compact layouts and to preserve
neighborhood relationships more efficiently than other force-
direct methods. Moreover, considering only visible data in the
physical simulation renders MIST scalable to a reasonable
degree, enabling a flexible exploration of document collection.
By extending the initial layout over the available space and
considering relevance, clutter is avoided. By integrating the
layout with word clouds, summarization of the data set content
helps guide the user towards interesting groups of documents
to be further explored. Additionally, the layout are pleasant and
harmonious. We are currently investigating how to incorporate
out-of-core data handling into MIST, what should allow the
navigation throughout large document collections feasible.
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